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I. INTRODUCTION

Interior ballistic calculations are used by charge designers to
predict gun performance and interior ballistic pressure-time and
pressure-distance profiles. For many granular and stick propellant
charges, predictions are reasonably straightforward and quite accurate,
enabling rapid fielding of reliable new propelling charges. As
performance requirements are increased, however, researchers are forced
into charge design areas which seek to take advantage of new propellants
and propelling charges having higher density and/or progressivity or
improved chemical characteristics. Performance predictions for such
charges are more difficult, however, since their burning characteristics
can be significantly different from conventional propellants.

Ballistic predictions for charges made of conventional propellants
require data on propellant burning rate vs. pressure, thermochemical,
form function, and dimensional properties of the propellant grains.

This information, along with other appropriate weapon and projectile
input, is sufficient for the calculations. For nonconventional systems,
however, additional data are required. Consolidated, deterred, layered,
unslotted and programmed splitting stick propellants (concept to be
discussed later) each pose unique informational requirements over and
above the input data mentioned above. For consolidated propellants,
data are needed on both the deconsolidation of the charge and the form
function behavior of the deconsolidated grains. In the case of deterred
propellants, the depth and concentration of the deterrent profile are
needed along with the burning rate versus pressure behavior of the
various parts of the deterred layer. For unslotted stick propellants,
information is needed on erosive burning and/or grain fracturing
effects. Finally, in the case of layered and programmed splitting stick
propellants, information is needed on the physical integrity of the
propellant sample and its burning behavior as a function of the distance.
burned into the grain. The added complexity in the burning of such-
propellants places additional burdens on the experimental diagnostics of
their combustion properties.

While the pressure dependence of burning rate can be reliably
obtainid for any standard propellant from conventional closed bomb
tests,” ancillary methods such as interrupted burning, flash x-ray
diagnostics, high speed cinematography, and thrust tests are sometimes
needed to study the burning properties of nonstandard systems. Even
when standard closed bomb tests are applied to unusual propellant
systems, it is frequently necessary to reduce the data in unusual ways.
A good example of such reduction methods is Ehe surface area profiling,
or "inverse" closed bomb analysis technique. At other times, when it
is likely that the underlying assumptions in our normal burning rate
analysis have been violated, we may still find it useful to speak of
"apparent burning rates" in order to compare the burning behavior_of
related propellant samples under essentially the same conditions. In
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the past we have succzssfully applieg a number of these techniques in
studies of njitramine,” consolidated,~ perforated stick,  and very high
burning rate’ propellant systems.

In the present study, our task was to examine the combustion
behavior of two_unusual propellant systems, programmed splitting stick®
and "fastcore". The programmed splitting stick propellant concept is
illustrated in Figure 1.

WEB

Figure 1. The Programmed Splitting Stick Propellant Concept
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In this case, the propellant, NOSOL 363, is extruded in a cylindrical
shape with star-shaped slots in the interior. The ends of the grain are
sealed. On burnthrough of the outer web, the propellant breaks into a
number of slivers, resulting in a large increase of surface area. Thifo
large surface area increase can have significant ballistic advantages.
The down-bore pressure can be tailored to obtain increased velocity for
a given charge weight. The "fastcore" grain is illustrated in Figure 2.
In this case an increase in mass generation rate is sought through the
change in the burning rate properties of the propellant on going from
the "cool" outer layer, NOSOL 318, to the more energetic, "hot" inner
layer, NOSOL 363. This increasing gas generation rate is designed to
occur when the projectile is down bore to increase muzzle velocity.

Figure 2. The Fastcore Propellant Concept

The studies to be described demonstrate the advantages of combining
experimental and/or unusual data reduction techniques in studying the
burning of novel propellants. In the present case, closed bomb and
interrupted burner studies as well as "inverse" reductions of the closed
bomb data were used to help piece together a picture of the combustion
details of the samples.




II. EXPERIMENTAL

1. INTERRUPTED BURNER TESTS:

The interrupted burner, pictured in Figure 3, was used to screen
samples prior to closed bomb firing and to gomplement the closed chamber
firings. One chamber had a volume of 66 cm”, and a diameter of 22.9 mm.
A second chamber had a diameter of 37 mm and a volume of 156 cm”. The
burst discs were designed to rupture at pressures from 7 to 60 MPa.
From one to three grains were used depending on the distance to be
burned into the web. The grains were weighed before firing and all the
recovered fragments were weighed after firing. The grain recovery
device consisted of a wire basket lined with a soft, water-soaked
sponge. The grains exiting the chamber frequently had a velocity such
that the grain residue was embedded in the sponge. There was no
evidence that much fracturing was caused by this process. The grains
were ignited by an ignition system consisting of a M-100 match and one
gram of Class 6 black powder contained within a thin tissue bag. The
propellant grains were attached to the igniter with a 0.25 mm diameter
wire to insure that no inhibition of surface burning would be caused by
tape or glue.
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Figure 3. Schematic of Interrupted Burner
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CLOSED BOMB TESTS:

Closed chamber tests were performed in the 850 MPa test fixture
pictured in Figure 4. The vessel was manufactured by Harwood
Engineering Company. The chamber cavity is 109 mm long and 50.8 mm in
digmeter with a hemispherical rear inner surface. The volume is 210

Pressure measurements were made with a Kistler 607C-4 transducer
and a Kistler 504E charge amplifier Data was acquired on a Nicolet
Explorer III digital oscilloscope, %lowed by data reduction on a PDP
11/34 computer using the CBRED2 code.
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Figure 4. h Pressure Vessel used for Closed Bomb Testin

All samples were ignited using an Atlas M-100 electric match with
1-2 grams of Class 6 black powder attached to it. The samples were
prepared by bagging the propellant in cellophane and inserting the
ignition squib into the bag before closure. All samp%es were fired at
ambient temperature at a loading density of 0.25 g/cm”.

PROPELLANTS :

The programmed splitting propellant (Figure 1) was made by the
Naval Ordnance Station at Indian Head, Maryland by extruding NOSOL 363
(Lot RAD-1-2-73). The grain size of the propellant varied a little from
lot to lot but nominal dimensions were 7.3 mm in diameter and 64 mm long

5
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with a "web" of 0.94 mm. This grain geometry required the development
of end sealing techniques to prevent premature flame intrusion into the
perforation. Several methods were tried, with varying amounts of
success. Sealing agents that were experimented with included asphaltum,
acetone, collodion, epoxy, Duco cement, and estane 5712. All of these
agents were used alone and the epoxy was also used in conjunction with
aluminum end caps.

The fastcore samples (Figure 2) were composed of NOSOL 363 and
NOSOL 318 with the middle layer of NOSOL 363 sandwiched between two
outer layers of NOSOL 318. These samples were also prepared by the
Naval Ordnance Station at Indian Head, Maryland. The samples were
delivered as sheet stock. Nominal grain dimensions were 50 mm long, 38
mm wide, and 6 mm thick.

III. RESULTS AND DISCUSSION
1. PROGRAMMED SPLITTING GRAINS:

a. Interrupted burner tests. A view of the propellant is shown in
Figure 1. A picture of the three samples (4, 6a and 6b) is shown in
Figure 5. Different extrui$on conditions caused the. differences
observed in these samples. Sample 4 shows only a small hole down the
axis of the grain with very little evidence of the radial slits. Sample
6a shows some free volume within the slits and sample 6b shows none.

Figure 5. End View of Programmed Splitting Grains;
Sample 4, 6a, and 6b
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Sample 4 was burned without any seals on the ends of the grain and
the results are seen in Figure 6. It is clear that very little "memory"
of the. slits remains because the propellant burned as though it was a
single perforation grain.

Figure 6. Sample 4:; Unburned, Burned.

Figures 7 (end view) and 8 (side view) show the residue from sample
6b. It is clear that the grain has burned down through the slits but,
nevertheless, the grain has remained intact. It is proposed that the
slits re-seal as the thermal wave moves radially into the grain. The
pressure time history was very smooth as would be the case for cord-like
combustion. Thgse tests were repeated in the larger volume combustion
chamber (156 cm”) with more than one grain and the results were
essentially the same. Burn times to blow-out pressures were
approximately 50 ms, similar to that in the closed chamber experiments
but pressures where splitting occurred were lower (15 MPa).
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Figure 7.

Figure 8.

Sample 6b: Unburned, Burned, End Viexl:=

B B N WO o B R T T T

Sample 6b: Unburned, Burned, Side View.
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As can be seen in Figure 5, the slits in sample 6a are wider,
giving a larger free volume. This is not desirable from a ballistic
standpoint as it will lower the chamber loading density. However, the
added space may avoid the problem with re-sealing of the slits as the
propellant burns from the outside in. Tests confirmed this, as the
propellant broke up into pie-shaped segments. The results can be seen
in Figure 9. These experiments were also used to pre-screen the samples
for use in the closed bomb firings since the results from the
interrupted burner studies were unambiguous. A simple visual
inspection, with no additional data reduction, was sufficient to check
for programmed splitting of the three samples. As a matter of fact,
pressure-time histories of the interrupted burner experiments were
useful in the interpretation of the results. In cases where no
segmenting occurred, these curves were very smooth. When segmenting did
occur, an abrupt change in pressure was observed. An example of this is
indicated at "S" in Figure 10. Similarly, early rapid pressure rises
were observed when the ends of the grains burned through prematurely.

Figure 9. Sample 6a: Pie-Shaped Fragments.
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Figure 10. Pressure Time History for Segmented Burning

b. Closed bomb tests. Preliminary screening indicated that the
best programmed splitting grains to use in the closed bomb testing would
be sample 6a (see Figure 5). Two approaches are available to reduce the
closed bomb data. The standard reduction, assuming a cord-like form
function, will give "apparent burning rates" as a function of pressure.
This is only an apparent burning rate as a programmed splitting form
function is not available in the CBRED2 code. The inverse reduction
will give normalized surface area (the ratio of the surface area at any
instant divided by the original surface area) as a function of mass
fraction burned with the burning rate as a given.

Past experience8 has shown that information from the standard
reduction technique may be difficult to interpret. Some standard
reductions were done in the hope that these might be easier to interpret
than similar reductions from past experiments. Figure 11 shows
comparisons of standard reductions in the form of superimposed apparent
burning rate curves for unsealed, or virgin grains, as well as grains
sealed with estane 5712, Duco cement, epoxy, and a combination of
acetone with Duco cement. As this form of data reduction did prove to
be difficult to interpret, primarily because of the lack of a suitable
form function, the rest of this discussion will revolve around the

inverse reductions.

10
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Figure 11. Superimposed "Apparent Burning Rate" Plots of

Programmed S tt ck ope

Various End Sealing Techniques.

Inverse reductions are compared to each other in Figure 12. The
input burning rates were derived from closed bomb firings of single
perforated grains of this propellant, NOSOL 363. As can be observed,
some of the experimental data showed an early increase in surface area.
The results show that although some of the end sealing techniques worked
to varying degrees, these sealing techniques were not reproducible. It
was suspected that the premature surface area increase was due solely to
inadequate end sealing techniques.

At this point questions were raised about the accuracy of the
inverse reduction technique. These arose primarily in response to the
abnormally high surface area ratios (as high as four, see Figure 12)
that were derived using the CBRED2 code. Theoretically, the normalized
surface area should have had a maximum value of 2.6 for the webs quoted.
This value will vary with the grain dimensions. In our experiments, the
abnormally high peaks that have occurred on the surface area profiles
are found in the lower ten percent of the pressure versus time data.
These data have typically been deemed as unreliable duflto ignition
start-up, flame spreading, and associated oscillations and
consequently were ignored.
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Figure 12. Superimposed Surface Area Profiles of Programmed Splitting
Stick Propellant using Various End Sealing Techniques.

The data reduction code, CBRED2, can be made to accept pressure Vvs.
time daig from the keyboard. One of the interior ballistic codes,
IBHVG2, with a programmed splitting form function incorporated into
it, was used to simulate a closed chamber experiment and generate a
pressure vs. time data set. This data was used as input to the CBRED2
code as a means to validate the accuracy of the inverse reduction
process. A comparison plot of two output data sets from the same input
data is shown in Figure 13. The different plots come from the fact that
the solid line, (A), was generated by the computer when a five point
bridge length was used for differentiation whereas the dotted line, (B),
was generated using a fifteeg point bridge length for differentiation of
the pressure vs. time curve. As can be seen, the normalized surface
area curves have maximum values of 2.0 or 2.4, depending on the
differentiation bridge length. While this is not as high as the
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theoretical maximum of 2.6, the inverse reduction seems to be a
reasonable guide as to what is actually happening in the closed vessel.
This figure also shows that even the method of data reduction (i.e. the
smoothing and differentiation bridge lengths) can impact the results.
In order for any valid comparisons to be made, all of the reduction
parameters must be equal.
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Figure 13. Superimposed Inverse Reductions of Synthetic
Pressure vs. Time Data.

* "A" - no smoothing done and a five point bridge.
"B" - one smoothing pass and a fifteen point bridge.

The interior ballistic code, IBHVG2, was used to generate
additional pressure versus time data. The propellant parameters that
were varied were the slot width and subsequently, the web. Inverse
reductions of this synthetic data are compared in Figure 1l4. Curve "A"
represents the charge of the previous paragraph that had nine grains of
propellant with a web of 0.94 mm. Curve "B" represents a charge of
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three grains that had a web of 0.43 mm and six grains with a web of 0.94
mm. Curve "C" represents a charge of eight grains with a web of 0.43 mm
and one grain with a web of 0.94 mm. Results were as expected. As the
web decreased, the increase in the normalized surface area took place
earlier, at a lower fraction burned. Such an early rise in the
normalized surface area, if observed in experimental data, could be due
to premature burn through of the outer web if the slots were not
centered in the grain, or to one or more of the grains opening up due to
inadequate end sealing techniques.
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Figure 14. Superimposed Inverse Reductions of Synthetic
Pressure vs. Time Data.

* "A" - nine grains with a web of 0.94 mm.
"B" - three grains with a web of 0.43 mm and
six grains with a web of 0.94 mm.
"C" - eight grains with a web of 0.43 mm and

one grain with a web of 0.94 mm.

Although the ma?gfacturing differences between propellants 6a and
6b were rather small they had a significant impact on the combustion
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process. We believe this had to do with the slot width characteristics
of samples 6a and 6b. Such differences could cause ballistic varia-
bility from lot-to-lot and could even cause unpredictable ballistics
when the firing temperature is changed. 1In effect, slivering may occur
at different pressures depending on propellant temperature.

A very important aspect of the programmed splitting concept is the
ability to seal the ends of the grain so that the flame does not
propagate down the axis of the grain. This has turned out to be a
difficult task. As was mentioned in the closed chamber section of this
report, several techniques were used. Epoxy with aluminum disks proved
to be very successful. An example can be seen in Figure 15. An
unburnhed stick is at the bottom and a partially burned stick with
aluminum end-caps is seen at the top. This sealing technique, however,
is not practical for the gun environment. Other sealants were also used
but with less success. The problem is that the flame can very easily
penetrate into small orifices, and the end hole in the grain is very
difficult to seal. Nevertheless, a minimum of three end coatings of
Duco cement was a reasonable alternative to the epoxy-aluminum end cap.
When three grains were burned in the interrupted burner, five out of the
six ends remained sealed up to the blow-out pressure.

Figure 15. Sample 6b; Top - Burned with Aluminum End Caps
Bottom - Unburned.




It is difficult to determine from closed chamber firings whether an
increase in surface area is due to burning through the side wall of the
grain or through the end sealant, except that the latter should result
in non-reproducible results. Extinguished grains from the interrupted
burner can help answer this question, as grains in which combustion has
penetrated through the ends appear distinctly different from those that
sliver properly.

2. FASTCORE:

a. Interrupted burner tests., There was some concern that the

flame would propagate between the laminations of the fastcore propellant
samples. If this happened the concept would be of no value
ballistically as the programmed burning would not work. Interrupted
burner firings of the laminated fastcore propellant showed good results
as there was no evidence of delamination of properly made samples. To
examine a worst case scenario, some samples were fired in which
separations between layers were intentionally introduced. In these
cases, the flame propagated between the layers as expected. Figure 16
shows a picture of an unburnt sample and two extinguished samples of
fastcore propellant. In the well laminated sample, the propellant
burned as programmed. In the other, where an intentional flaw was
introduced, the flame penetrated between the layers resulting in a
delamination of that sample.

Figure 16. Fastcore: Unburned, Bur ed w amination.
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b. Closed bomb tests. The fastcore propellant presented a
different sort of problem for the closed bomb data reduction. The
grains are composed of one third NOSOL 363 and two thirds NOSOL 318.
The thermochemical input from either of the individual components would
be inaccurate. The CBRED2 code permits the operator to input tabular
values of thermochemical data., This variation is typically used to
account for pressure effects on the thermochemistry. In this instance
we used it to introduce thermochemical variations as a function of
propellant mass fraction burned.

The fastcore propellant was expected to show an increase in the
slope of the derived burning rate when the outer layer of NOSOL 318
burned through to the inner layer of NOSOL 363. This slope increase
does present itself in the derived burning rates as can be seen. in
Figure 17. The slope break is not as pronounced as was expected. It is
suspected that the gradual change may be due to the smoothing that takes
place during data reduction, or to the method of thermochemical input,
or possibly to an uneven burn through of the outer layer of the
propellant grain,
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Figure 17. Burning Rate Curves for NOSOL 318,
NOSOL 363, and Fastcore Propellant,
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IV. CONCLUSIONS

Examples of the use of complementary experimental and data
reduction techniques to characterize the combustion properties of
innovative propellant samples have been presented. As a result, both of
these grain concepts have demonstrated promise for future applications.

Small variations of the slotted perforation in the programmed
splitting grains can affect if and when the grains will sliver. Too
small of an internal slotted void can result in an annealing effect with
no breaking up of the grains.

End sealing of the programmed splitting grains is still a problem,
although the multig&e dipping of the ends in Duco cement gave some good
ballistic results.

The integrity of the laminated bond of the fastcore propellant has
been confirmed during firing. This is provided that there are no flaws
in the grains.

Closed bomb testing has shown that it is possible.to modify the gas
generation rate through the use of the fastcore propellants.
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